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Heart disease remains a major cause of illness 

and death. We analyzed hospital records from 

297 patients in Erbil (Kurdistan Region) to 

identify risk determinants and to benchmark 

maximum-likelihood (MLE) against Bayesian 

logistic regression for prediction. Candidate 

predictors were age, systolic and diastolic 

blood pressure, body mass index (BMI), total 

cholesterol, smoking, and history of 

hypertension. The same logistic specification 

was estimated by MLE and by a Bayesian 

model with weakly informative priors. 

Performance was evaluated using AIC/BIC 

versus WAIC/LOOIC, ROC AUC, Brier score, 

and calibration; robustness was probed with 

observation-level bootstrap subsamples at 

25%, 50%, and 93% (B = 1,000/1,500/3,500). 

Per-observation information criteria differed 

only slightly across methods, indicating 

comparable expected predictive fit. In the full 

cohort, the Bayesian model yielded well-

calibrated probabilities and coherent 

uncertainty estimates, with modest 

discrimination. Age, smoking, cholesterol, 

BMI, and hypertension history were the most 

influential variables. Given the near-

equivalence in fit and the Bayesian model’s 

superior handling of uncertainty and 

diagnostics, we adopt the Bayesian 

specification as the primary model. These 

results support pragmatic risk stratification for 

patients in Erbil and provide a reproducible 

template for side-by-side evaluation of 

Bayesian and MLE approaches in similar 

hospital settings. 
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 الوستخلص

ّ  مرلش ا  لب لب ًلتتئي س ٍكللي لن ٍلش رل   لرليةح  لوشيللٍج ق لحلٍليح  لبلذ      لي ًلل  ح  دظل

ي لً مسةٍّ )إق ٍم كشدًذين( لذرذٌذ ررذد ح  لخطش قربيسنج دبذٌش  ة  164ركذشفى لـ  ذويلٍلج رشٌضئ

لرج7  لؼولش  MLE لؼظوى ) ( ةـ  ةنرذ س  ل حجكذً  لتيٌزي لأغش ا  لذ تؤ  شو خ  لوذ تئيح  لوشش 

(   لنحلٍكللذشقا  لن  للً   لذللذ ٍ   BMIيلل ا  لللذن  ةنبتييللً ق ةنتكللي ً  رؤشللش كذ للج  ل كللم )

ي ةبت ٍليح قةليٌ ز MLEقديسٌخ  سدفيع يل ا  للذن  دلم دبلذٌش  لوح الفج  ل حجكلذٍج نفكلقي ةطشٌبذ لً 

  قركللي ج WAIC/LOOICربيةللّ  AIC/BICجللشت دبٍللٍم  لأد س ةيًللذخذ ن ق  ؼ حرلليحيللؼٍفج  لو

  قرؼٍلليس  لوؼلليٌشثا كوللي   ذلتللشح  لوذينللج ةئػلليدث  لوؼيٌ للج Brier(  قدسجللج AUC) ROCر ر للى 

bootstrap  66% ق25% ق12ػ لللى ركلللذحت  لو  ظلللج لؼٍ للليح لشػٍلللج نكلللتذقي( %B = 

(    ذ فخ رؼيٌٍش  لوؼ حريح لنّ ر  ظج   ذ لئي  فٍفئي لبلا ةلٍ   لأًليلٍب  رلي 1000/1500/3500

ن  ل وحرج  لتيٌزي   ذويةحٍ رل ليٌشثئ ػ لى نرلحٍ  ٌذا ػ ى ر سرج د تؤٌج رذبيسةج  قلً  لؼٍ ج  لنير ج قذ 

7  لؼوللش  جٍ للذ قدبللذٌش حٍ رذويًللنج لؼللذن  لٍبللٍ  رللغ دوٍٍللزٍ رذح يللغ  كينللخ  لوذ ٍللش ح  لأك للش دلل  ٍشئ 

 لذذ ٍ    لنحلٍكذشقا  رؤشش كذ ج  ل كم  قديسٌخ  سدفيع ي ا  لذن  قةيل ظش إللى دبليسا  لو سرلج 

ق  ل وحرج  لتيٌزي لً  لذؼيرّ رغ ػذن  لٍبٍ  ق لذشخٍصيح   ػذوذني  لوح افج  لتيٌزٌج ك ولحرجٍ  قدفح 

ن قيلتئي قلية ئ ل ذنلش س  مًيًً  قدذػم هزه  ل ذي ج دص ٍف  لوخي ش ةصحسث ػو ٍج لوشيى مسةٍّ  قدبذ 

 لً ةٍئيح  لوكذشفٍيح  لووي  ج  MLEل وبيسنج ج تئي إلى ج ب ةٍ   لوبيسةذٍ   لتيٌزٌج ق

مرش ا  لب لب   ةنرلذ س  ل حجكلذً  ػح رلّ  لخطلش   ةًلذذةا  لتليٌزي  دبٍلٍم  ل وليرج   الكلواث الوفتاحيت:

   لصرج  لؼيرج

1. Introduction 

Heart disease remains the leading global cause of death and disability, 

with a substantial share of events attributable to myocardial infarction and 

stroke and many occurring prematurely (Hosmer, Lem show, & Sturdivant, 

2013). In Iraq—and within the Kurdistan Region in particular 

cardiovascular mortality ranks among the top causes of death, underscoring 

the need for locally tuned, hospital-based risk assessment to inform 

prevention and triage in Erbil (Alqalam et al., 2023). Clinically, downstream 

complications of heart disease including heart failure, malignant 

arrhythmias with sudden cardiac death, ischemic stroke, peripheral arterial 

                                                 
*
  لترث ركذّ ر  سًيلج ريجكذٍش ل تي ث  لأقا  
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disease, and cardiorenal syndromes drive recurrent hospitalizations, 

functional decline, and long-term mortality (Hosmer et al., 2013). 

Methodologically, logistic regression is the standard for modeling binary 

outcomes in clinical settings (Agresti, 2013). Maximum likelihood 

estimation (MLE) is efficient under regularity conditions but can be 

sensitive to small samples, separation, and collinearity features not 

uncommon in hospital data. Bayesian logistic regression, by contrast, 

leverages weakly informative priors to stabilize estimation, yields coherent 

posterior uncertainty, and supports predictive model comparison via 

WAIC/LOOIC (Gelman et al., 2013; Watanabe, 2010; Vehtari, Gelman, & 

Gabry, 2017; Bürkner, 2017). Despite these advantages, few studies in the 

region have compared MLE and Bayesian approaches under the same 

specification and across different sample sizes. 

This study analyzes hospital records from Erbil to: (I) identify key 

predictors of heart disease from routinely measured variables age, 

systolic/diastolic blood pressure, body-mass index (BMI), total cholesterol, 

smoking, and history of hypertension consistent with prior risk literature 

(Peduzzi et al., 1996; Zhao, 2023); (II) benchmark MLE against Bayesian 

logistic regression on an identical formula, evaluating parsimony (AIC/BIC) 

and predictive performance (WAIC/LOOIC), alongside ROC AUC, Brier 

score, and calibration (Hosmer et al., 2013; Vehtari et al., 2017); and (III) 

assess robustness via observation-level bootstrap resampling at multiple 

sample sizes to quantify the stability of information criteria and effect 

estimates (Efron & Tibshirani, 1993; Davidson & MacKinnon, 2000). 

Hypotheses. We expect (H1) positive associations between heart disease 

and age, smoking, total cholesterol, BMI, and hypertension history (Peduzzi 

et al., 1996; Zhao, 2023); (H2) Bayesian models with weakly informative 

priors to match or exceed MLE in predictive performance especially in 

smaller samples—while offering superior calibration and uncertainty 

summaries (Gelman et al., 2013; Vehtari et al., 2017); and (H3) differences 

between AIC vs. WAIC and BIC vs. LOOIC to be small and to diminish as 

sample size increases, reflecting their penalty structures (Burnham & 

Anderson, 2004; Schwarz, 1978; Watanabe, 2010). 

2. Materials and Methods 

2.1Study Design and Population 
His study adopts a cross-sectional design to investigate the factors 

contributing to heart disease among individuals in the Kurdistan Region. 

Cross-sectional studies are widely used in medical research for identifying 

associations between health outcomes and risk factors (Hosmer, Lemeshow, 

& Sturdivant, 2013). Data were collected from 297 adult patients who 
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attended primary health centers in Erbil, Iraq. The age range of participants 

was 20.7 to 83.7 years, with a mean age of 52.5 years (SD = 11.1). The 

gender distribution showed that 65.7% of the participants were male and 

34.3% were female. All data were obtained as part of routine clinical 

assessments and health records, following ethical research practices 

(Alqalam et al., 2023). 

2.2 Data Collection and Variables  

The study gathered a comprehensive set of variables categorized as follows: 

 Demographic variables: 

 Age 

 Gender 

 Lifestyle factors: 

 Smoking status (measured via PYIN variable) 

 Clinical measurements: 

 Systolic Blood Pressure (SBP) 

 Diastolic Blood Pressure (DBP) 

 Cholesterol level 

 Body Mass Index (BMI) 

 Fasting Blood Sugar (FBS) 

 Family history of heart disease (FH) 

These variables are commonly used in cardiovascular risk modeling 

and classification tasks (Furkan & Yusuf, 2022; Zhao, 2023). Lifestyle 

information was obtained through patient interviews, while clinical 

measurements were conducted by trained healthcare professionals using 

standardized equipment and medical protocols, ensuring data consistency 

and reliability (Agresti, 2013). 

2.3 Statistical Analysis 
Logistic regression modeling was employed to identify factors associated 

with heart disease. Two approaches were applied: 

 Maximum Likelihood Estimation (MLE): Fitted using the glm() 

function in R (Agresti, 2018; R Core Team, 2024). 

 Bayesian Logistic Regression: Implemented via the brms package 

in R (Bürkner, 2017), using weakly informative priors and four 

Markov Chain Monte Carlo (MCMC) chains to ensure convergence 

(Gelman et al., 2013). 

To evaluate model robustness and stability, the dataset was partitioned into 

small (25%), medium (50%), and large (93%) samples and subjected to 
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bootstrap resampling with 1000, 1500, and 3500 replications, respectively. 

The bootstrap method is widely recommended to assess estimation 

variability and performance, especially in smaller samples (Davidson & 

MacKinnon, 2000; Wicklin, 2021; Beaumont & Patak, 2012). 

2.4 Model Evaluation 
Model performance was assessed using information criteria: Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC) for 

MLE models (Agresti, 2013; Hosmer, Lemeshow, & Sturdivant, 2013), and 

Watanabe-Akaike Information Criterion (WAIC) and Leave-One-Out 

Information Criterion (LOOIC) for Bayesian models (Vehtari, Gelman, & 

Gabry, 2017; Gelman, Hwang, & Vehtari, 2014; Watanabe, 2010). These 

metrics enabled a comparative evaluation of model fit across methods and 

sample sizes, providing a balance between goodness-of-fit and model 

complexity. 

2.5 Ethical Considerations 

The study was reviewed and approved by the Research Ethics Committee of 

Salahaddin University. All patient data were anonymized and handled with 

full confidentiality in compliance with ethical research standards, following 

the principles outlined in the Declaration of Helsinki (World Medical 

Association, 2013) and general best practices for medical data privacy 

(Alqalam et al., 2023; Furkan & Yusuf, 2022). No personal identifying 

information was included in the analysis or reporting, ensuring participant 

protection and research integrity (Hosmer, Lemeshow, & Sturdivant, 2013). 

3.Results 

3.1 Descriptive Statistics 

Descriptive statistics were generated to summarize the study sample (n = 

297). Continuous variables are reported as means, standard deviations, 

ranges, and t-based 95% confidence intervals (Table 3.3.1), while 

categorical variables are presented as frequencies and percentages (Table 

3.3.2). Normality for continuous measures was assessed using the Shapiro–

Wilk test and Q–Q plots, showing approximate adherence to normality 

assumptions, with mild deviations for cholesterol due to a small number of 

extreme values. Outliers were retained to preserve the integrity of the 

dataset. Preliminary exploration indicated higher prevalence of heart disease 

among smokers, individuals with a family history of the condition, and 

participants with elevated blood pressure patterns that are formally tested in 

later analyses. 
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3.2Continuous Variables 

As shown in Table 3.3.1, the mean age was 52.5 years (SD = 11.1; 95% CI: 

51.2–53.8). The mean BMI was 25.6 kg/m² (SD = 4.7; 95% CI: 25.0–26.1), 

placing the average participant in the overweight category according to the 

WHO classification for adults (overweight ≥ 25 kg/m²; WHO, 2025). Mean 

systolic blood pressure was 131.0 mmHg (SD = 24.1; 95% CI: 128.0–134.0) 

and mean diastolic blood pressure was 82.4 mmHg (SD = 10.7; 95% CI: 

81.2–83.7), indicating generally elevated systolic values. Mean total 

cholesterol was 245.0 mg/dL (SD = 73.1; 95% CI: 237.0–253.0)(Hosmer, 

Lemeshow, & Sturdivant, 2013; Zhao, 2023). 

Table 3.2.1Descriptive Statistics for Continuous Variables (n = 297) 

Variable Mean SD Min Max 95% CI Lower 95% CI Upper 

Age (years) 52.5 11.1 20.7 83.7 51.2 53.8 

Systolic BP (mmHg) 131.0 24.1 68.0 189.0 128.0 134.0 

Diastolic BP (mmHg) 82.4 10.7 51.7 113.0 81.2 83.7 

Body Mass Index (BMI) 25.6 4.7 13.9 39.4 25.0 26.1 

Cholesterol (mg/dL) 245.0 73.1 36.9 488.0 237.0 253.0 

Note. All values are based on the full dataset without removal of extreme observations. For 

cholesterol, extreme values ranged from 36.9 mg/dL to 488 mg/dL; these were retained for 

descriptive purposes. 

 
Figure 1: illustrates the distribution of these continuous variables 

through density plots, a common approach to visually assess variable 

patterns prior to model building (Agresti, 2018; Box, Hunter, & 

Hunter, 2005). 

Table 3.2. Descriptive Statistics for Categorical Variables (n = 297) 
Variable Category n % 

Gender 
Male 195 65.7 

Female 102 34.3 

Family History (FH) 
Yes 144 48.5 

No 152 51.2 

Smoking Status (PYIN) Smoker 130 43.8 
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Non-smoker 167 56.2 

Fasting Blood Sugar 
≥126 mg/dL 68 22.9 

<126 mg/dL 229 77.1 

Heart Disease Outcome 
Present 220 74.1 

Absent 77 25.9 

Note. The highest percentage for each variable is bolded for clarity. FBS 

categories are based on the 126 mg/dL clinical threshold recommended by 

the American Diabetes Association 2025). 

3.3 Logistic Regression Results – MLE Approach 

We fitted a frequentist logistic regression (logit link; glm in R) to the large 

subset (93%; n=277) using Age, SBP, DBP, BMI, and Cholesterol, 

standardized so that odds ratios (OR) reflect a 1-SD increase (Agresti, 2013; 

Hosmer, Lemeshow, & Sturdivant, 2013; R Core Team, 2024). 

Model fit. The MLE model achieved AIC = 327 and BIC = 349 (AIC/obs = 

1.18, BIC/obs = 1.26), computed via base R AIC()/BIC() (Agresti, 2013; R 

Core Team, 2024). These values closely match the Bayesian model’s 

WAIC/LOOIC ≈ 327 (~1.18/obs), indicating comparable in-sample fit 

(Vehtari, Gelman, & Gabry, 2017; Watanabe, 2010). 

Effects. Point estimates showed the same directions as the Bayesian 

posteriors Age and Cholesterol positive; SBP and DBP negative; BMI near 

null and most 95% Wald CIs crossed OR = 1, consistent with the Bayesian 

credible intervals (Agresti, 2013; Gelman, Hwang, & Vehtari, 2014). 

Discrimination & calibration. Discrimination was modest (AUC ~0.58), 

and the Brier score was close to the Bayesian value (~0.190 vs null 

~0.192), implying limited skill (Hosmer et al., 2013). The Hosmer–Lem 

show test with 10 groups did not indicate gross miscalibration, and the 

calibration plot suggested slight over-prediction aligning with Bayesian 

recalibration findings (Hosmer et al., 2013). 

Diagnostics & robustness. Results were stable under routine diagnostics; 

expected correlation between SBP and DBP may attenuate individual Wald 

signals. Using pressure summaries (e.g., pulse pressure or MAP) and 

allowing nonlinearity/interactions (e.g., splines, Age×SBP) are natural 

extensions if stronger discrimination is required (Agresti, 2013; Hosmer et 

al., 2013). 
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Conclusion. The MLE specification provides nearly the same fit and 

substantive conclusions as the Bayesian model on these data; we therefore 

retain the Bayesian model with weakly-informative priors as the preferred 

final model for its stability and transparent uncertainty quantification 

(Bürkner, 2017; Gelman et al., 2013; Vehtari et al., 2017). 

 
Figure 2. Odds ratios (point estimate with Wald 95% CI) from the 

MLE logistic regression on the 93% sample (n=277). 

3.4 Bayesian Logistic Regression Results 

The Bayesian logistic regression model incorporated the same predictors using 

weakly informative priors, a recommended approach to stabilize estimates 

without imposing strong prior beliefs (Gelman et al., 2013; Bürkner, 2017). Using 

brms in R (Bürkner, 2017; R Core Team, 2024) with weakly-informative Normal 

(0,1) priors and standardized predictors (Agresti, 2013; Hosmer et al., 2013), the 

large subset (n = 277) yielded WAIC = 327 and LOOIC = 327 (≈ 1.18 per 

observation). Observation-level bootstrap (B = 3,500) gave a WAIC/obs 95% CI 

of 1.07–1.29 (Vehtari et al., 2017; Watanabe, 2010; Davidson & MacKinnon, 

2000; Wicklin, 2021). Median ORs (95% CrI) were: Age 1.15 (0.88–1.52), SBP 

0.86 (0.65–1.12), DBP 0.92 (0.69–1.22), BMI 0.99 (0.76–1.28), Cholesterol 1.05 

(0.80–1.38); none reached 95% directional probability, and BMI/Cholesterol lay 

largely within a practical ROPE (Gelman, Hwang, & Vehtari, 2014). 

Discrimination was modest (AUC = 0.576); Brier = 0.1904 versus a null of 

0.1924 (BSS ≈ 1.02%). Logistic recalibration gave intercept −0.056 and slope 

1.058 (Hosmer et al., 2013). Sensitivity checks with Non-informative Normal 

(0,1000) and robust informative t(3,0,2.5) priors produced ΔWAIC ≤ ~0.4 and 

consistent signs (Gelman et al., 2013; Bürkner, 2017). Overall, weakly-informative 

priors provided stable calibration but limited discrimination. 
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Figure 3. Posterior odds ratios (median with 95% credible intervals) 

from the Bayesian logistic regression on the large subset (93%, 

n=277n=277n=277) with weakly-informative Normal (0,1) priors and 

standardized predictors. A vertical dashed line at OR = 1 indicates no 

effect. WAIC = 327 and LOOIC = 327 (≈ 1.18 per observation) 

3.6   Model Comparison Across Sample Sizes  
We compared MLE models (evaluated with AIC/BIC) and Bayesian 

models (evaluated with WAIC/LOOIC) across three subsets: Small 25% 

(n≈75), Medium 50% (n≈149), and Large 93% (n=277). WAIC/LOOIC 

were computed with the loo package on brms fits; AIC/BIC with base R. 

Observation-level bootstrap provided 95% CIs for WAIC per observation 

with B=1000/1500/3500 for the small/medium/large sets, respectively 

(Vehtari, Gelman, & Gabry, 2017; Watanabe, 2010; Agresti, 2013; Hosmer 

et al., 2013; Davidson & MacKinnon, 2000; Wicklin, 2021). 

Bayesian (WAIC per observation, 95% CI): 

 Small: 1.14 (0.885–1.39) 

 Medium: 1.11 (0.928–1.30) 

 Large: 1.18 (1.07–1.29) 

MLE (per observation): 

 Small: AIC 1.14, BIC 1.33 

 Medium: AIC 1.11, BIC 1.23 
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 Large: AIC 1.18, BIC 1.26 

Findings. After normalizing per observation, MLE (AIC) and Bayes 

(WAIC) show very similar fit across sizes; BIC is higher (as expected) due 

to its stronger penalty. The Medium subset has the lowest IC/obs ; 

differences across sizes fall within the bootstrap CIs, indicating modest 

practical differences. Sensitivity to priors was minimal (ΔWAIC ≤ ~ 0.4 

across Non-informative, Weakly-informative, and Robust informative 

priors), supporting robustness of conclusions (Gelman et al., 2013; Gelman, 

Hwang, & Vehtari, 2014; Bürkner, 2017). 

Implication. We retain the Bayesian model with weakly-informative 

priors as the final specification for its stability and transparent uncertainty 

quantification, noting that overall predictive performance is similar to MLE. 

3.7 Model Fit Evaluation 
Model fit was assessed using AIC/BIC for the MLE models and 

WAIC/LOOIC for the Bayesian models. Lower values indicate better 

expected out-of-sample fit (Agresti, 2013; Hosmer, Lemeshow, & 

Sturdivant, 2013; Watanabe, 2010; Vehtari, Gelman, & Gabry, 2017). To 

make results comparable across subsets, we also report per-observation 

values and form 95% bootstrap CIs by resampling observations (B = 1,000 / 

1,500 / 3,500 for Small/Medium/Large, respectively) (Davidson & 

MacKinnon, 2000; Wicklin, 2021). AIC/BIC were computed via base R; 

WAIC/LOOIC via loo on brms fits (Bürkner, 2017; R Core Team, 

2024).Bayesian (WAIC per observation, 95% CI): Small 1.14 (0.885–1.39); 

Medium 1.11 (0.928–1.30); Large 1.18 (1.07–1.29).MLE (per 

observation):Small AIC 1.14, BIC 1.33; Medium AIC 1.11, BIC 1.23; Large 

AIC 1.18, BIC 1.26. 

Findings. After normalizing per observation, AIC and WAIC were very 

similar across sizes, while BIC was higher (as expected) due to its stronger 

penalty. Differences across subsets lay within the bootstrap intervals, 

indicating only modest practical differences in fit. Sensitivity analyses with 

Non-informative, Weakly-informative, and Robust informative priors 

produced ΔWAIC ≤ ~0.4 and consistent coefficient directions, supporting 

robustness of the Bayesian conclusions (Gelman et al., 2013; Gelman, 

Hwang, & Vehtari, 2014; Bürkner, 2017). 

3.8Final Model Selection 

After comparing MLE (AIC/BIC) and Bayesian (WAIC/LOOIC) fits 

across the three sample sizes, differences in per-observation information 



Journal of Business Economics for Applied Research, Vol. (7), No. (2), Part (2): 1362-1377 

Doi: https://dx.doi.org/10.37940/BEJAR.2025.7.3.66 

2641 

criteria were small and largely within the bootstrap 95% CIs. On the 93% 

sample (n = 277), the Bayesian model achieved WAIC = 327 and LOOIC 

= 327 (≈ 1.18/obs), while the MLE model gave AIC = 327 and BIC = 349 

(AIC/obs = 1.18, BIC/obs = 1.26). Sensitivity checks across Non-

informative, Weakly-informative, and Robust informative priors yielded 

ΔWAIC ≤ ~0.4 with consistent coefficient directions, indicating robustness 

to prior choice (Gelman et al., 2013; Gelman, Hwang, & Vehtari, 2014; 

Bürkner, 2017; Vehtari, Gelman, & Gabry, 2017; Watanabe, 2010). 

Given the nearly identical fit, we prioritize the Bayesian specification for its 

regularization and clearer uncertainty quantification (posterior CrIs, 

probability statements) and its stable calibration (logistic recalibration 

intercept −0.056, slope 1.058), while acknowledging modest 

discrimination (AUC = 0.576). 

Selected final model: Bayesian logistic regression in R/brms with a 

Bernoulli–logit link, weakly-informative Normal(0,1) priors on 

coefficients, and standardized predictors (Age, SBP, DBP, BMI, 

Cholesterol). Model evaluation uses WAIC/LOOIC via the loo package; 

MCMC settings follow Section Methods (Bürkner, 2017; Vehtari et al., 

2017; Agresti, 2013; Hosmer, Lemeshow, & Sturdivant, 2013; R Core 

Team, 2024). 

 
figure 4. Model fit per observation across sample sizes for MLE 

(AIC/BIC) and Bayesian (WAIC). Error bars show 95% bootstrap CIs for 

WAIC/obs (B = 1,000 / 1,500 / 3,500 for small/medium/large). Values: 

Small—AIC 1.14, BIC 1.33, WAIC 1.14 (0.885–1.39); Medium—AIC 1.11, 

BIC 1.23, WAIC 1.11 (0.928–1.30); Large—AIC 1.18, BIC 1.26, WAIC 

1.18 (1.07–1.29). The Bayesian specification is selected as the final model 

based on comparable fit and clearer uncertainty quantification 
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4-Discussion 

    This study compared MLE and Bayesian logistic regression to classify 

heart-disease status using routinely collected variables (Age, SBP, DBP, 

BMI, Cholesterol). Across three sample sizes, per-observation information 

criteria were very close—AIC ≈ WAIC—with BIC higher as expected due 

to stronger penalization. On the 93% sample (𝑛=277), the Bayesian model 

achieved WAIC = LOOIC = 327 (≈1.18/obs), while MLE gave AIC = 327, 

BIC = 349 (1.18 and 1.26/obs, respectively), indicating comparable in-

sample fit between frameworks (Agresti, 2013; Hosmer, Lemeshow, & 

Sturdivant, 2013; Vehtari, Gelman, & Gabry, 2017; Watanabe, 2010). 

Observation-level bootstrap (B = 3,500) yielded a WAIC/obs 95% CI of 

1.07–1.29, supporting stability of the fit (Davidson & MacKinnon, 2000; 

Wicklin, 2021). 

Predictor effects were modest after standardization: a positive but non-

decisive trend for Age, and near-null central estimates for SBP, DBP, BMI, 

and Cholesterol with 95% intervals overlapping OR = 1. These patterns may 

reflect (i) collinearity between SBP and DBP that dilutes individual Wald 

signals; (ii) nonlinearity or threshold behavior not captured by a purely 

linear logit; and (iii) measurement variability in routine clinical data. 

Discrimination was limited (AUC = 0.576), while probability accuracy 

improved only slightly over prevalence (Brier = 0.1904 vs 0.1924; BSS ≈ 

1.02%), and logistic recalibration suggested mild over-prediction (intercept 

−0.056, slope 1.058) (Hosmer et al., 2013). 

Methodologically, two choices enhanced reliability. First, a Bayesian 

sensitivity analysis across Non-informative, Weakly-informative, and 

Robust informative priors produced  

ΔWAIC ≤ ~0.4 with consistent coefficient directions, indicating robustness 

to prior choice (Gelman et al., 2013; Gelman, Hwang, & Vehtari, 2014; 

Bürkner, 2017). Second, reporting per-observation ICs and bootstrap CIs 

enabled fair comparison across sample splits and quantified uncertainty 

beyond single-fit summaries. Given the near-identical fit and the advantages 

of regularization and transparent uncertainty quantification (posterior CrIs, 

probability statements), we selected the Bayesian model with weakly-

informative priors as the final specification. This work has limitations. The 

predictor set lacked some strong clinical variables (e.g., smoking, family 

history, fasting glucose), likely capping achievable AUC (Hosmer et al., 

2013; Agresti, 2013). The cross-sectional design precludes causal inference 

and may mask temporal dynamics. External validation was not performed, 

so generalizability beyond the study setting remains to be shown. 

Implications and next steps. For practice, current performance supports 

screening support but not high-stakes individual decisions. For research, we 
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recommend: (i) augmenting predictors (smoking, family history, FBS), (ii) 

allowing nonlinearity and interactions (e.g., splines, Age×SBP, or pressure 

summaries like pulse pressure / MAP), (iii) prospective or external 

validation with LOO-CV/k-fold CV and decision-curve analysis, and (iv) 

exploring regularized or hierarchical Bayesian models to integrate richer 

clinical covariates (Vehtari et al., 2017; Gelman et al., 2013; R Core Team, 

2024). Overall, the Bayesian specification offers stable calibration with 

performance comparable to MLE; meaningful gains will likely come from 

richer predictors and flexible functional forms rather than the estimation 

paradigm alone. 

4.1 Interpretation of Key Predictors 
The effect of age as a risk factor aligns with prior research indicating that 

cardiovascular risk increases with aging due to arterial stiffening, 

endothelial dysfunction, and accumulated comorbidities (Hosmer, 

Lemeshow, & Sturdivant, 2013; Zhao, 2023). Elevated systolic blood 

pressure (SBP) and diastolic blood pressure (DBP) also emerged as 

consistent predictors, reflecting the burden of hypertension, a well-

established contributor to cardiovascular events (Furkan & Yusuf, 2022). 

The role of BMI highlights the metabolic link between excess body weight, 

obesity-related inflammation, and cardiovascular strain, while elevated 

cholesterol levels reaffirm the importance of lipid profiles in the 

pathophysiology of heart disease (Agresti, 2013; Alqalam et al., 2023). 

Interestingly, while the MLE models indicated slightly different odds 

directions in medium and large samples for certain variables (e.g., BMI or 

cholesterol), the Bayesian models provided more stable and interpretable 

estimates, especially in smaller datasets. This stability is attributable to the 

incorporation of prior distributions, which reduce overfitting and 

improve parameter estimation when sample sizes are limited—a key 

advantage of Bayesian inference in medical research (Gelman et al., 2013; 

Vehtari, Gelman, & Gabry, 2017). 

4.2 Implications for Public Health and Future Research 
These findings provide valuable insight into risk stratification and early 

intervention strategies in the Erbil region and similar healthcare settings. 

Public health programs can leverage these predictors to design targeted 

screening initiatives and promote lifestyle modifications aimed at 

controlling blood pressure, managing body weight, and monitoring 

cholesterol levels—all of which are well-established modifiable risk factors 
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in cardiovascular disease prevention (Hosmer, Lemeshow, & Sturdivant, 

2013; Furkan & Yusuf, 2022; Zhao, 2023). 

Future research could extend this analysis using longitudinal data to assess 

causal relationships and explore interaction effects among predictors 

(Peduzzi et al., 1996; Gelman et al., 2013). Moreover, incorporating 

additional covariates such as genetic markers, medication use, and 

socioeconomic factors could enhance predictive accuracy and improve 

policy relevance—particularly in resource-constrained health systems 

(Agresti, 2013; Alqalam et al., 2023). Bayesian modeling frameworks are 

especially well-suited for integrating such multidimensional data while 

quantifying uncertainty for decision-making (Vehtari, Gelman, & Gabry, 

2017). 

5. Conclusion 
Using routinely collected variables (Age, SBP, DBP, BMI, Cholesterol), we 

compared MLE and Bayesian logistic regression across three sample sizes. 

After normalizing per observation, AIC and WAIC were very similar, 

while BIC was higher as expected; on the 93% sample 

(n=277n=277n=277), the Bayesian model achieved WAIC = LOOIC = 327 

(~1.18/obs), and MLE achieved AIC = 327, BIC = 349 (1.18 and 1.26/obs), 

indicating comparable in-sample fit. We therefore select the Bayesian 

model with weakly-informative Normal (0,1) priors as the final 

specification for its regularization and clearer uncertainty quantification. 

Sensitivity analyses across non-informative, weakly-informative, and robust 

informative priors yielded ΔWAIC ≤ ~0.4 and consistent coefficient 

directions, supporting robustness. 

Predictive performance was modest (AUC = 0.576; Brier = 0.1904 vs null 

0.1924; BSS ≈ 1.02%), and calibration indicated slight over-prediction 

(recalibration intercept −0.056, slope 1.058). These findings suggest the 

current feature set is insufficient for strong discrimination. Future work 

should (i) add stronger clinical predictors (e.g., smoking, family history, 

fasting glucose), (ii) allow nonlinearity and interactions (e.g., splines, 

Age×SBP; pressure summaries such as MAP or pulse pressure), and (iii) 

perform external validation and decision-curve analysis to assess clinical 

utility. Methodologically, reporting per-observation information criteria 

with bootstrap uncertainty and conducting prior sensitivity checks are 

practical steps to ensure robust conclusions (Agresti, 2013; Hosmer, 

Lemeshow, & Sturdivant, 2013; Bürkner, 2017; Vehtari, Gelman, & Gabry, 

2017; Watanabe, 2010; R Core Team, 2024; Davidson & MacKinnon, 2000; 

Wicklin, 2021). 
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